The Crystal Structures of β-Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉

BY KUNIAKI KIHARA* AND TOSHIO SUDO

Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Ohtsuka, Tokyo

(Received 25 May 1972; accepted 5 December 1973)

 β -Cs₃Sb₂Cl₉ is orthorhombic with space group *Pmcn*. There are four formula units in a unit cell of dimensions a = 7.630 (20), b = 13.079 (3) and c = 18.663 (4) Å. The structure has been determined by using the sign relations of reflexions and refined by the full-matrix least-squares method. The final *R* is 0.108 for 449 three-dimensional photographic intensities. The structure is formed by Cs and Cl atoms in nearly closest packing and Sb atoms in octahedral holes. The unit cell has six layers which are stacked along the *c* axis in the sequence $\dots ABACBCABACBC\dots$ The structure contains two types of SbCl₃ molecules, one with the average distances Sb-Cl=2.43, Cl-Cl=3.52 Å and the other with Sb-Cl= 2.52, Cl-Cl=3.73 Å. Cs₃Bi₂Cl₉ is isostructural with β -Cs₃Sb₂Cl₉ and has a unit cell of dimensions a = 7.644 (3), b = 13.227 (3) and c = 18.684 (4) Å. The final *R* is 0.16 for 253 two-dimensional photographic intensities. The structure also contains two types of BiCl₃ molecules, one with the average distances Bi-Cl=2.53, Cl-Cl=3.69 Å.

Introduction

There are many compounds with the formula $R_3M_2Cl_9$ (R = Cs, K, *etc.*, and M = Fe, As, Bi, W, Cr, Tl, *etc.*). Their structures are composed of Cl and R atoms in nearly closest packing and M atoms located in Cl octahedral holes. The structures can be classified into two groups: one has unit cells formed from three identical layers and the other six layers of RCl₃.

The structures of $Cs_3As_2Cl_9$ (Hoard & Goldstein, 1935), α -Cs_3Sb_2Cl_9 (Yamatera & Nakatsu, 1954; Kihara & Sudo, 1971b) and Cs_3Fe_2Cl_9 (Yamatera & Nakatsu, 1954) are isostructural and have three-layered trigonal unit cells. The structures of K_3W_2Cl_9 (Watson & Waser, 1958), Cs_3Cr_2Cl_9 (Wessel & IJdo, 1957) and Cs_3Tl_2Cl_9 (Powell & Wells, 1935; Hoard & Goldstein, 1935) have six-layered hexagonal unit cells.

Cs₃Sb₂Cl₉ has two modifications, α - and β -types (Kihara & Sudo, 1971*a*). β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ are isostructural and crystallize in a new structure. It is the purpose of the present paper to give the results of the crystal structure examination of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ and to explain the structural relationship between the related structures.

Crystal data and intensity measurements

Single crystals of β -Cs₃Sb₂Cl₉ were obtained by slow and static recrystallization from dilute hydrochloric acid solutions of Cs₃Sb₂Cl₉. The structure is orthorhombic with the space group *Pmcn* or *P*2₁*cn*. Foster & Hargreaves's (1963) general moments tests were carried out to determine the space group. The results (weighted average values for all reflexions were used) are shown in Table 1. The experimental moments were calculated from the intensities of 310 *hkl* reflexions in the range $\sin \theta = 0.8-1.0$. The experimental values indicate the centrosymmetric space group *Pmcn*. The unit-cell dimensions were measured from Weissenberg and rotation photographs. The density (Kihara & Sudo, 1971*a*) corresponds to $4Cs_3Sb_2Cl_9$ in the unit cell. The crystallographic data of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ are summarized in Table 2 with those of three related structures.

Table 1.	Comparison of experimental and theoretical
	moments of z for β -Cs ₃ Sb ₂ Cl ₉

		Theoretical		
Moment	Experimental	Pmcn	$P2_1cn$	
$\langle z^2 \rangle$	3.1	3.03	2 ·04	
$\langle z^3 \rangle$	15.0	14.73	6.33	

The intensity data for β -Cs₃Sb₂Cl₉ were obtained with Cu K α radiation on multiple-film integrated Weissenberg photographs for five layers along [100]. Since the crystals are readily affected by moisture, the specimens were coated with an adhesive material for long exposures. Three specimens with dimensions of about 0·15 × 0·10 × 0·5 mm were used to complete the whole measurement. 449 independent reflexions were estimated by means of a microphotometer and corrected for absorption, Lorentz and polarization effects. The intensities of high-level reflexions on the Weissenberg photographs were corrected for extension using Phillips's (1954, 1956) equation. For Cs₃Bi₂Cl₉, 187 0kl and 66 hk0 reflexions were measured by the same procedure as for β -Cs₃Sb₂Cl₉.

Structure determination

The structures of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ were solved by means of a systematic application of the sign

^{*} Present address: Department of Earth Sciences, Faculty of Science, Kanazawa University, 1-1, Marunouchi, Kanazawa, Japan.

relations. The procedures reported by Grant, Howells & Rogers (1957) were followed in detail. With the signs thus obtained, an electron density projection on (100) was calculated and interpreted based on packing relations. Successive Fourier syntheses reduced the R value to 0.35 for the 0kl reflexions of β -Cs₃Sb₂Cl₉ and to 0.38 for those of Cs₃Bi₂Cl₉.

Refinement

The structures of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ were refined by the full-matrix least-squares method using the program *ORFLS* of Busing, Martin & Levy (1962), modified by Sakurai, Nakatsu & Iwasaki for the UNICS System (1967) of HITAC 5020 of Tokyo University. Scattering factors for non-ionized atoms and dispersion corrections were taken from *International Tables for X-ray Crystallography* (1962). Isotropic temperature factors and unit weights for reflexions were applied for the two structures. The centrosymmetric space group *Pmcn* was confirmed by the successful refinement of the structures.

The refinement of β -Cs₃Sb₂Cl₉ was started first in the centrosymmetric space group. Six iterations varying 41 parameters lowered the *R* value to 0.108 for 449 observed reflexions.* The refinement progressed somewhat slowly, but without oscillation of the parameter shifts. The maximum parameter shift in the final itera-

* The table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30327 (2 pp.). Copies can be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England. tion was in the z coordinate of Cl(1), and had a value of one-ninth of the corresponding estimated standard deviation. A structure refinement was also attempted on the basis of the non-centrosymmetric space group, but five iterations gave no convergence of the parameters.

Refinement for $Cs_3Bi_2Cl_9$ was carried out with the 0kl and hk0 intensities. The atomic coordinates and isotropic temperature factors of β -Cs₃Sb₂Cl₉ described above were adopted as the initial parameters. The x coordinates of Cl(4), Cl(5) and Cl(6), and the temperature factors of all atoms were fixed because of overlapping of atoms in the (001) projection. Five iterations lowered R to 0.16 for the 253 reflexions. The atomic coordinates and the individual isotropic temperature factors are given in Table 3.

Discussion of the structures

Structure of β -Cs₃Sb₂Cl₉

The structure of β -Cs₃Sb₂Cl₉ projected along [100] is shown in Fig. 1. The interatomic distances and angles were computed using Sakurai's program of the UNICS System (1967), *RSDA*-4, and are listed in Table 4 with those of Cs₃Bi₂Cl₉ computed using *RSDA*-4 modified by Kanazawa & Matsumoto for FACOM 230-35 of Kanazawa University.

The structure consists of a close-packed arrangement of large Cs and Cl atoms with Sb atoms in twothirds of the octahedral holes of Cl atoms. The unit cell has six layers of $CsCl_3$ which are stacked along the *c* axis in a sequence ... *ABACBCABACBC*.... The structure contains two crystallographically different

	Cs ₃ Fe ₂ Cl ₉	Cs ₃ As ₂ Cl ₉	α-Cs ₃ Sb ₂ Cl ₉	β-Cs ₃ Sb ₂ Cl ₉	Cs ₃ Bi ₂ Cl ₉
	Yamatera & Nakatsu (1954)	Hoard & Goldstein (1935)	Kihara & Sudo (1971)	Present study	Present study
Unit cell (Å)	$a = 7 \cdot 28$	a = 7.37	a = 7.633	a = 7.630 (20) b = 13.079 (3)	a = 7.644 (3) b = 13.227 (3)
	c = 8.90	c = 8.91	c = 9.345	c = 18.663 (4)	c = 18.684 (4)
D.	3.37	3.42	3.38	3.43	3.99
Ź	1	1	1	4	4
Space group	P3m1 or P321	P 321	P321	Pmcn	Pmcn

Table 2. Crystallographic data of β -Cs₃Sb₂Cl₉, Cs₃Bi₂Cl₉ and other related structures

Table 3. Final atomic coordinates and isotropic temperature factors of (a) β -Cs₃Sb₂Cl₉ and (b) Cs₃Bi₂Cl₉

<i>(a)</i>			(b)					
	x	у	Ζ			x	у	Z
Cs(1)	0.25	0.41690 (96)	0.08198 (59)	2.698	Cs(1)	0.25	0.41498 (159)	0.08636 (131)
Cs(2)	0.25	-0·24903 (84)	-0.24765(65)	1.893	Cs(2)	0.25	-0.25083(185)	-0.24888(131)
Cs(3)	0.25	0.41430 (78)	0.40913 (46)	1.689	Cs(3)	0.25	0.41990 (160)	0.41093 (131)
Sb(1)	0.25	-0.23287(49)	-0.00114(47)	0.509	Bi(1)	0.25	-0.23861(71)	-0.00124 (65)
Sb(2)	0.25	0.08239 (56)	0.31533 (34)	0.439	Bi(2)	0.25	0.08140)79)	0.31632 (62)
Cl(1)	0.25	-0.41581 (365)	-0.08941 (225)	2.532	Cl(1)	0.25	-0·38597 (530)	-0.09354(520)
Cl(2)	0.25	0.24366 (266)	0.24014 (166)	1.219	Cl(2)	0.25	0.22958 (389)	0.23534 (412)
Cl(3)	0.25	-0·41779 (307)	-0.42300(196)	1.978	Cl(3)	0.25	-0·41915 (496)	-0.42254 (470)
Cl(4)	-0.01802 (590)	0.16273 (198)	0.07504 (134)	3.149	Cl(4)	-0.01802	0.16415 (368)	0.07798 (301)
Cl(5)	0.00369 (760)	-0·00127 (196)	0.24687 (137)	3.102	Cl(5)	0.00369	-0.00722 (405)	0.24759 (298)
Cl(6)	0.00435(724)	0.17717(236)	0.40550 (160)	4.160	Cl(6)	0.00435	0.17357 (427)	0.40931 (353)

Table 4. Interatomic distances and angles of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ (e.s.d.'s are given in parentheses)

$(1) (2) \frac{1}{2} - (3) \frac{1}{2} + (4) - (5) - (6) \frac{1}{2} + (7) \frac{1}{2} - (8)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(i) (ii) (iii) (iv)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
β -Cs ₃ Sb ₂ Cl ₉ Distances (Å)				
Sb(1) i	Sb(2	2) i	Cl(1) i	
Cl(3) iv 2·45 (4) Cl(4) 3,5 2·42 (4) Cl(6) 4,6 2·89 (5) Cl(1) i 2·90 (5)	Cl(2) i Cl(5) 1,7 Cl(6) 1,7 Cl(1) iv	2·53 (4) 2·52 (5) 2·81 (5) 2·81 (5)	Cl(4) 3,5 3.76 (6) Cl(6) 2,8 3.90 (6) Cl(6) 4,6 4.12 (6) Cl(5) 2,8 3.75 (6)	
Cl(2) i	Cl(6) 2.5	3) i	$C_{1}(1)$ ii 2.82 (4)	
Cl(3) 4,6 3.87 (5) Cl(4) 1,7 3.85 (5) Cl(5) 1,7 3.72 (5) Cl(6) 1,7 3.71 (5)	Cl(6) 3,3 Cl(5) 2,8 Cl(4) 4,6 Cl(4) 2,8	3·84 (5) 3·51 (5) 3·80 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cs(2) i	Cs(3) i		
$\begin{array}{ccccc} Cl(2) \ ii & 3\cdot 82 \ (4) \\ Cl(5) \ 5,3 & 3\cdot 80 \ (4) \\ Cl(6) \ 5,3 & 3\cdot 65 \ (4) \\ Cl(3) \ i & 3\cdot 95 \ (4) \\ Cl(5) \ 2,8 & 3\cdot 77 \ (3) \\ Cl(1) \ i & 3\cdot 67 \ (5) \end{array}$	Cl(3) ii Cl(6) 1,7 Cl(4) 2,8 Cl(3) i Cl(4) 4,6 Cl(5) 4,6	3.83 (4) 3.62 (4) 3.84 (4) 3.83 (4) 3.71 (4) 3.67 (4)	$\begin{array}{ccccc} Cl(4) \ 1-Cl(4) \ 7 & 4.08 \ (7) \\ Cl(4) \ 7-Cl(4) \ 1 & 3.55 \ (7) \\ Cl(5) \ 1-Cl(5) \ 7 & 3.76 \ (9) \\ Cl(5) \ 7-Cl(5) \ 1 & 3.87 \ (9) \\ Cl(6) \ 1-Cl(6) \ 7 & 3.75 \ (8) \\ Cl(6) \ 7-Cl(6) \ 1 & 3.88 \ (8) \end{array}$	
Angles (°)				
Sb(1) i Cl(4) 3 ^ Cl(4) 5 Cl(3) iv ^ Cl(4) 3,5 Cl(1) i ^ Cl(4) 3,5 Cl(1) i ^ Cl(4) 3,5 Cl(1) i ^ Cl(6) 4,6 Cl(3) iv ^ Cl(6) 4,6 Cl(6) 4 ^ Cl(6) 6	93·9 (10) 92·0 (9) 89·4 (9) 90·8 (9) 87·7 (9) 84·5 (10)	Sb(2) i Cl(5) 1 ^ Cl(5) 7 Cl(2) i ^ Cl(5) 1, Cl(2) i ^ Cl(6) 1, Cl(1) iv ^ Cl(6) 1, Cl(6) 1 ^ Cl(6) 7 Cl(1) iv ^ Cl(6) 7, Cl(1) iv ^ Cl(5) 1,	96·4 (15) 7 94·6 (8) 7 88·0 (9) 7 87·9 (9) 83·8 (13) 7 89·1 (9)	
Cs ₃ Bi ₂ Cl ₉ Distances (Å)				
Bi(1) i	Bi(2) i	Cl(1) i	
Cl(3) iv 2.55 (6) Cl(4) 3,5 2.48 (5) Cl(6) 4,6 2.84 (5) Cl(1) i 2.60 (8)	Cl(2) i Cl(5) 1,7 Cl(6) 1,7 Cl(1) iv	2·47 (6) 2·56 (5) 2·83 (5) 3·08 (7)	Cl(4) 3,5 3·44 (7) Cl(6) 2,8 4·24 (8) Cl(6) 4,6 4·03 (9) Cl(5) 2,8 3·79 (9)	
Cl(2) i Cl(5) 4.6 4.00 (6)	Cl(6) 3.5	3) i 3·79 (7)	$C_{s(1)}$ i $C_{1(1)}$ ii 3.84 (1)	
Cl(4) 1,7 3.68 (8) Cl(5) 1,7 3.66 (6) Cl(6) 1,7 3.82 (8)	Cl(5) 2,8 Cl(4) 4,6 Cl(4) 2,8	3.85 (8) 3.57 (8) 3.83 (6)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cs(2) i Cs(3) i				
Cl(2) ii 3·84 (1) Cl(5) 5,3 3·92 (6) Cl(6) 5,3 3·72 (6) Cl(3) i 3·93 (7) Cl(5) 2,8 3·71 (6) Cl(1) i 3·41 (9)	Cl(3) ii Cl(6) 1,7 Cl(4) 2,8 Cl(3) i Cl(4) 4,6 Cl(5) 4,6	3.82 (1) 3.76 (6) 3.89 (6) 3.77 (7) 3.69 (5) 3.67 (6)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Angles (°)		D: /2)	1	
$\begin{array}{c} \text{Di}(1) \ 1\\ \text{Cl}(4) \ 3 \ \land \ \text{Cl}(4) \ 5\\ \text{Cl}(3) \ \text{iv} \ \land \ \text{Cl}(4) \ 3,5\\ \text{Cl}(1) \ \text{i} \ \land \ \text{Cl}(4) \ 3,5\\ \text{Cl}(1) \ \text{i} \ \land \ \text{Cl}(6) \ 4,6\\ \text{Cl}(3) \ \text{iv} \ \land \ \text{Cl}(6) \ 4,6\\ \text{Cl}(6) \ 4 \ \land \ \text{Cl}(6) \ 6\end{array}$	91·2 (20) 90·5 (20) 85·1 (20) 95·4 (20) 89·2 (20) 87·0 (20)	$\begin{array}{c} Dl(2) \\ Cl(5) \ 1 \ \land \ Cl(5) \ 7 \\ Cl(2) \ i \ \land \ Cl(5) \ 1, \\ Cl(2) \ i \ \land \ Cl(6) \ 1, \\ Cl(1) \ iv \ \land \ Cl(6) \ 1, \\ Cl(6) \ 1 \ \land \ Cl(6) \ 7 \\ Cl(1) \ iv \ \land \ Cl(5) \ 1, \\ \end{array}$	94·6 (20) 7 93·1 (20) 7 92·0 (20) 7 91·5 (20) 83·3 (20) 7 83·6 (20)	

Sb atoms. Each Sb(1) atom is located at approximately 2.43 Å from three Cl atoms and at 2.89 Å from three opposite Cl atoms [Fig. 2(c)], and each Sb(2) atom at 2.52 Å from three Cl atoms and at 2.81 Å from opposite ones [Fig. 2(d)]. Thus the Sb atoms form pyramidal molecules with the three Cl atoms at the shorter distances. The apex angle Cl-Sb-Cl averages 93°12′ for Sb(1)Cl₃ and 95°12′ for Sb(2)Cl₃ molecule. The SbCl₃ molecules are represented by dotted lined triangles in Fig. 1.

SbCl₃ molecules

The two types of SbCl₃ molecule in the present structure are compared with those in other related structures in Fig. 2. The molecules in β -Cs₃Sb₂Cl₉ have only mirror symmetry while those in α -Cs₃Sb₂Cl₉ have trigonal symmetry. The differences 0.03 and 0.01 Å between the three bond lengths for Sb(1) and Sb(2) respectively are rather smaller than the corresponding estimated standard deviations. In the two independent molecules, however, there is no trigonal symmetry as far as bond angles are concerned. The two angles related by mirror symmetry are 92°0′ for Sb(1)Cl₃ and 94°36′ for Sb(2)Cl₃; the third angle is much greater: 93°54′ for Sb(1)Cl₃ and 96°24′ for Sb(2)Cl₃. It is notable that the difference, amounting to 0.10 Å between the mean bond lengths for the two independent molecules in

Fig. 1. The projection of β -Cs₃Sb₂Cl₉ along the *a* axis. The smaller open circles are Sb atoms, the larger ones are Cl atoms and the black ones, Cs atoms.

Fig. 2. Antimony trichloride molecules, showing interatomic distances and angles. (a) SbCl₃ (Lindqvist & Niggli, 1956), (b) SbCl₃ in α-Cs₃Sb₂Cl₉ (Kihara & Sudo, 1971), (c) Sb(1)Cl₃ in β-Cs₃Sb₂Cl₉ and (d) Sb(2)Cl₃ in β-Cs₃Sb₂Cl₉.

 β -Cs₃Sb₂Cl₉, is more than twice the estimated standard deviation for the bond lengths. Since the normal covalent distance Sb-Cl is 2.40 Å (Pauling & Huggins, 1934), the mean bond length 2.52 Å between Sb(2) and three Cl atoms is considerably lengthened. Fig. 3 shows the arrangement of Cl and tervalent atoms in the structure of the As, Sb and Bi compounds. In the structure of β -Cs₃Sb₂Cl₉, octahedra occupied by Sb(1) atoms share corners with six, of which three are occupied by Sb(2) atoms and three are vacant, and those occupied by Sb(2) atoms share three corners with ones occupied by Sb(1) atoms and one face with a vacant octahedron. Each $Sb(2)Cl_3$ molecule shares its basal face with the vacant octahedron. The mean Cl-Cl distance of the Sb(2)Cl₃ molecule, 3.73 Å, is much longer than that of the $Sb(1)Cl_3$ molecule, 3.52 Å, and that of the $SbCl_3$ in α-Cs₃Sb₂Cl₉, 3.56 Å (Fig. 3). The longer Cl-Cl distance in the $Sb(2)Cl_3$ molecule, the larger angle of Cl-Sb(2)-Cl and the longer distance of Sb(2)-Cl can be considered to be caused by the sharing of the molecular basal face with a vacant octahedron.

The relationship between α and β types

The length of the *b* axis of β -Cs₃Sb₂Cl₉ is smaller than the length expected from α -Cs₃Sb₂Cl₉, as shown in Table 1. This can be explained by considering the arrangement and distortion of the anion octahedra. The octahedra occupied by Sb atoms are distorted as shown in Fig. 3 and the faces opposite the SbCl₃ molecules are considerably expanded compared with the others. In the structure of the α type, corners of the octahedra are shared and the octahedra occupied by Sb atoms are arranged so that the expanded faces are parallel to (001) [Fig. 3(b)]. Accordingly, the length of the α (=b) axis of the α type will be strongly affected by distortion of the octahedra occupied by Sb atoms. On the other hand, in the structure of the β type, the octahedra occupied by Sb(1) atoms do not arrange with the expanded faces parallel to (001) [Fig. 3(c)]. In this structure, accordingly, the length of the b axis

is smaller than $a_{\alpha}/3$ (a_{α} : the α axis length of the α type). In addition to the above arguments, differences in volumes between vacant octahedra in the two structures should be noted. Vacant octahedra tend to expand in the α type, but do not expand in the β type since they share a face with an SbCl₃ molecule. It is apparent that the octahedral arrangement in the structure of the β type gives a more compact structure compared with that in the α type. Judging from the compactness of the structures, the β type is probably the low-temperature form and the α type the high-temperature form of Cs₃Sb₂Cl₉. This is supported by the fact that the β type transforms into the α type on heating to 300°C.

Fig. 3. Arrangements of Cl octahedra and of trichloride molecules. Numerals represent average values over three lengths. (a) $Cs_3As_2Cl_9$, (b) α - $Cs_3Sb_2Cl_9$, (c) β - $Cs_3Sb_2Cl_9$ and (d) $Cs_3Bi_2Cl_9$.

Bi compound and other related structures

The Bi compound gives only the structure analogous to β -Cs₃Sb₂Cl₉. Each Bi atom also forms a BiCl₃ pyramidal molecule. The interatomic distances in the molecules are 2.50 Å for Bi(1)–Cl, 2.53 Å for Bi(2)–Cl, 3.57 Å for Cl–Cl of Bi(1)Cl₃ and 3.69 Å for Cl–Cl of Bi(2)Cl₃. In this structure, the difference between the bond lengths and angles of the two crystallographically independent molecules is rather small and each molecule is less distorted.

The structural relationship between the Fe, As, Sb, Bi, Tl, Cr and W compounds is summarized as follows:

$$MCl_{3} \begin{cases} Cs_{3}Fe_{2}Cl_{9} \\ Cs_{3}As_{2}Cl_{9} \\ \alpha-Cs_{3}Sb_{2}Cl_{9} \\ \beta-Cs_{3}Sb_{2}Cl_{9} \\ Cs_{3}Bi_{2}Cl_{9} \\ Cs_{3}Bi_{2}Cl_{9} \\ Cs_{3}Tl_{2}Cl_{9} \\ Cs_{3}Cr_{2}Cl_{9} \\ K_{3}W_{2}Cl_{9} \end{cases} \begin{cases} Cs_{3}W_{2}Cl_{9} \text{ type} \\ K_{3}W_{2}Cl_{9} \text{ type} \\ Cs_{3}W_{2}Cl_{9} \\ Cs_{3}W_{2}Cl_{9} \end{cases}$$

The structure of β -Cs₃Sb₂Cl₉ (or Cs₃Bi₂Cl₉) is comparable with, but not the same as, the structure of the K₃W₂Cl₉ type. The former is composed of Cs and Cl atoms and discrete MCl₃ molecules and the latter has the complex M₂Cl₉³⁻ while both have a similar arrangement of Cs and Cl atoms. It is considered to be difficult for elements such as Fe, As, Sb and Bi, which do not appear to give stable complexes, to form the structure of the K₃W₂Cl₉ type, because of closer M–M separation in the structure of the K₃W₂Cl₉ type. The structure of the K₃W₂Cl₉ type is presumably shown only by elements such as Tl, Cr and W, which form stable complexes.

In the Fe, As, Sb and Bi compounds, with an increase in the size of the tervalent atoms, the structure of the $Cs_3Bi_2Cl_9$ type is preferentially formed. Fig. 3 shows that the vacant octahedra in the $Cs_3As_2Cl_9$ type are considerably larger than those in the $Cs_3Bi_2Cl_3$ type. With increase in the size of the tervalent atom, it becomes increasingly difficult to form a compact structure

of the Cs₃As₂Cl₉ type. On the other hand, each vacant octahedron in the structures of β -Cs₃Sb₂Cl₉ and Cs₃Bi₂Cl₉ slightly contracts because of sharing a face with an MCl₃ molecule [Fig. 3(c) and (d)]. The structure of the Cs₃Bi₂Cl₉ type is stable for the compounds having large tervalent atoms, since they hardly require contraction of vacant octahedra. Only the Sb compound crystallizes in the two structural types, because of the intermediate size of the Sb atom between the As and the Bi atoms.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Foster, F. & Hargreaves, A. (1963). Acta Cryst. 16, 1124–1133; 1133–1139.
- GRANT, D. F., HOWELLS, R. G. & ROGERS, D. (1957). Acta Cryst. 10, 489–497.
- HOARD, J. L. & GOLDSTEIN, L. (1935). J. Chem. Phys. 3, 117-122.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- KIHARA, K. & SUDO, T. (1971a). Z. Kristallogr. 134, 155-158.
- KIHARA, K. & SUDO, T. (1971b). Z. Kristallogr. 134, 142-144.
- LINDQVIST, I. & NIGGLI, A. (1956). J. Inorg. Nucl. Chem. 2, 345–347.
- PAULING, L. & HUGGINS, M. L. (1934). Z. Kristallogr. 87, 205–238.
- PHILLIPS, D. C. (1954). Acta Cryst. 7, 746-751.
- PHILLIPS, D. C. (1956). Acta Cryst. 9, 819-821.
- Powell, H. M. & Wells, A. F. (1935). J. Chem. Soc. pp. 1008-1012.
- UNICS System (1967). Universal Crystallographic Computation Program System, edited by T. SAKURAI. Cryst. Soc. Japan.
- WATSON, W. H. JR & WASER, J. (1958). Acta Cryst. 11, 689-692.
- WESSEL, G. J. & IJDO, D. J. W. (1957). Acta Cryst. 10, 466-468.
- YAMATERA, H. & NAKATSU, K. (1954). Bull. Chem. Soc. Japan, 27, No. 4, 244–244.