The Crystal Structures of $\boldsymbol{\beta}-\mathbf{C s}_{3} \mathbf{S b}_{\mathbf{2}} \mathbf{C l}_{\mathbf{9}}$ and $\mathbf{C s}_{3} \mathbf{B i}_{2} \mathbf{C l}_{\mathbf{9}}$

By Kuniaki Kihara* and Toshio Sudo
Geological and Mineralogical Institute, Faculty of Science, Tokyo University of Education, Ohtsuka, Tokyo

(Received 25 May 1972; accepted 5 December 1973)
$\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ is orthorhombic with space group Pmen. There are four formula units in a unit cell of dimensions $a=7.630$ (20), $b=13.079$ (3) and $c=18.663$ (4) \AA. The structure has been determined by using the sign relations of reflexions and refined by the full-matrix least-squares method. The final R is 0.108 for 449 three-dimensional photographic intensities. The structure is formed by Cs and Cl atoms in nearly closest packing and Sb atoms in octahedral holes. The unit cell has six layers which are stacked along the c axis in the sequence $\ldots A B A C B C A B A C B C \ldots$. The structure contains two types of SbCl_{3} molecules, one with the average distances $\mathrm{Sb}-\mathrm{Cl}=2.43, \mathrm{Cl}-\mathrm{Cl}=3.52 \AA$ and the other with $\mathrm{Sb}-\mathrm{Cl}=$ $2 \cdot 52, \mathrm{Cl}-\mathrm{Cl}=3.73 \AA . \mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ is isostructural with $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and has a unit cell of dimensions $a=$ 7.644 (3), $b=13.227$ (3) and $c=18.684$ (4) \AA. The final R is 0.16 for 253 two-dimensional photographic intensities. The structure also contains two types of BiCl_{3} molecules, one with the average distances $\mathrm{Bi}-\mathrm{Cl}=2 \cdot 50, \mathrm{Cl}-\mathrm{Cl}=3 \cdot 57 \AA$ and the other with $\mathrm{Bi}-\mathrm{Cl}=2 \cdot 53, \mathrm{Cl}-\mathrm{Cl}=3 \cdot 69 \AA$.

Introduction

There are many compounds with the formula $\mathrm{R}_{3} \mathrm{M}_{2} \mathrm{Cl}_{9}$ ($\mathrm{R}=\mathrm{Cs}, \mathrm{K}$, etc., and $\mathrm{M}=\mathrm{Fe}, \mathrm{As}, \mathrm{Bi}, \mathrm{W}, \mathrm{Cr}, \mathrm{Tl}$, etc.). Their structures are composed of Cl and R atoms in nearly closest packing and M atoms located in Cl octahedral holes. The structures can be classified into two groups: one has unit cells formed from three identical layers and the other six layers of RCl_{3}.

The structures of $\mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9}$ (Hoard \& Goldstein, 1935), $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ (Yamatera \& Nakatsu, 1954; Kihara \& Sudo, 1971b) and $\mathrm{Cs}_{3} \mathrm{Fe}_{2} \mathrm{Cl}_{9}$ (Yamatera \& Nakatsu, 1954) are isostructural and have three-layered trigonal unit cells. The structures of $\mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}$ (Watson \& Waser, 1958), $\mathrm{Cs}_{3} \mathrm{Cr}_{2} \mathrm{Cl}_{9}$ (Wessel \& IJdo, 1957) and $\mathrm{Cs}_{3} \mathrm{Tl}_{2} \mathrm{Cl}_{9}$ (Powell \& Wells, 1935; Hoard \& Goldstein, 1935) have six-layered hexagonal unit cells.
$\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ has two modifications, α - and β-types (Kihara \& Sudo, 1971a). $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ are isostructural and crystallize in a new structure. It is the purpose of the present paper to give the results of the crystal structure examination of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ and to explain the structural relationship between the related structures.

Crystal data and intensity measurements

Single crystals of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ were obtained by slow and static recrystallization from dilute hydrochloric acid solutions of $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$. The structure is orthorhombic with the space group Pmen or $P 2_{1} c n$. Foster \& Hargreaves's (1963) general moments tests were carried out to determine the space group. The results (weighted average values for all reflexions were used)

[^0]are shown in Table 1. The experimental moments were calculated from the intensities of $310 h k l$ reflexions in the range $\sin \theta=0 \cdot 8-1 \cdot 0$. The experimental values indicate the centrosymmetric space group Pmon. The unit-cell dimensions were measured from Weissenberg and rotation photographs. The density (Kihara \& Sudo, 1971a) corresponds to $4 \mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ in the unit cell. The crystallographic data of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ are summarized in Table 2 with those of three related structures.

\section*{Table 1. Comparison of experimental and theoretical moments of z for $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$
 | | | Theoretical | |
| :---: | :---: | :---: | :---: |
| Moment | Experimental | $P m c n$ | $P 2_{1} c n$ |
| $\left\langle z^{2}\right\rangle$ | 3.1 | 3.03 | 2.04 |
| $\left\langle z^{3}\right\rangle$ | 15.0 | 14.73 | 6.33 |}

The intensity data for $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ were obtained with $\mathrm{Cu} K \alpha$ radiation on multiple-film integrated Weissenberg photographs for five layers along [100]. Since the crystals are readily affected by moisture, the specimens were coated with an adhesive material for long exposures. Three specimens with dimensions of about $0.15 \times 0.10 \times 0.5 \mathrm{~mm}$ were used to complete the whole measurement. 449 independent reflexions were estimated by means of a microphotometer and corrected for absorption, Lorentz and polarization effects. The intensities of high-level reflexions on the Weissenberg photographs were corrected for extension using Phillips's (1954, 1956) equation. For $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}, 1870 \mathrm{kl}$ and $66 h k 0$ reflexions were measured by the same procedure as for $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$.

Structure determination

The structures of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ were solved by means of a systematic application of the sign
relations. The procedures reported by Grant, Howells \& Rogers (1957) were followed in detail. With the signs thus obtained, an electron density projection on (100) was calculated and interpreted based on packing relations. Successive Fourier syntheses reduced the R value to 0.35 for the 0 kl reflexions of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and to 0.38 for those of $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$.

Refinement

The structures of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ were refined by the full-matrix least-squares method using the program ORFLS of Busing, Martin \& Levy (1962), modified by Sakurai, Nakatsu \& Iwasaki for the UNICS System (1967) of HITAC 5020 of Tokyo University. Scattering factors for non-ionized atoms and dispersion corrections were taken from International Tables for X-ray Crystallography (1962). Isotropic temperature factors and unit weights for reflexions were applied for the two structures. The centrosymmetric space group Pmen was confirmed by the successful refinement of the structures.

The refinement of β - $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ was started first in the centrosymmetric space group. Six iterations varying 41 parameters lowered the R value to 0.108 for 449 observed reflexions.* The refinement progressed somewhat slowly, but without oscillation of the parameter shifts. The maximum parameter shift in the final itera-

[^1]tion was in the z coordinate of $\mathrm{Cl}(1)$, and had a value of one-ninth of the corresponding estimated standard deviation. A structure refinement was also attempted on the basis of the non-centrosymmetric space group, but five iterations gave no convergence of the parameters.
Refinement for $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ was carried out with the $0 k l$ and $h k 0$ intensities. The atomic coordinates and isotropic temperature factors of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ described above were adopted as the initial parameters. The x coordinates of $\mathrm{Cl}(4), \mathrm{Cl}(5)$ and $\mathrm{Cl}(6)$, and the temperature factors of all atoms were fixed because of overlapping of atoms in the (001) projection. Five iterations lowered R to 0.16 for the 253 reflexions. The atomic coordinates and the individual isotropic temperature factors are given in Table 3.

Discussion of the structures

Structure of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$

The structure of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ projected along [100] is shown in Fig. 1. The interatomic distances and angles were computed using Sakurai's program of the UNICS System (1967), RSDA-4, and are listed in Table 4 with those of $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ computed using RSDA-4 modified by Kanazawa \& Matsumoto for FACOM 230-35 of Kanazawa University.
The structure consists of a close-packed arrangement of large Cs and Cl atoms with Sb atoms in twothirds of the octahedral holes of Cl atoms. The unit cell has six layers of CsCl_{3} which are stacked along the c axis in a sequence $\ldots A B A C B C A B A C B C \ldots$ The structure contains two crystallographically different

Table 2. Crystallographic data of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}, \mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ and other related structures

Unit cell (\AA)	$\mathrm{Cs}_{3} \mathrm{Fe}_{2} \mathrm{Cl}_{9}$	$\mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9}$	$\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$	$\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$	$\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$
	Yamatera \& Nakatsu (1954)	Hoard \& Goldstein (1935)	Kihara \& Sudo (1971)	Present study	Present study
	$a=7.28$	$a=7.37$	$a=7.633$	$\begin{aligned} & a=7 \cdot 630(20) \\ & b=13.079(3) \end{aligned}$	$\begin{aligned} & a=7.644 \text { (3) } \\ & b=13.227 \text { (3) } \end{aligned}$
	$c=8.90$	$c=8.91$	$c=9.345$	$c=18.663$ (4)	$c=18.684$ (4)
$D_{\text {x }}$	$3 \cdot 37$	$3 \cdot 42$	$3 \cdot 38$	$3 \cdot 43$	3.99
Z	1	1	1	4	4
Space group	$P \overline{3} m 1$ or P321	P321	P321	Pmen	Pmen

Table 3. Final atomic coordinates and isotropic temperature factors of (a) $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and (b) $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$

	(a)				(b)			
	x	y	z			x	y	z
$\mathrm{Cs}(1)$	$0 \cdot 25$	$0 \cdot 41690$ (96)	0.08198 (59)	2.698	$\mathrm{Cs}(1)$	$0 \cdot 25$	$0 \cdot 41498$ (159)	$0 \cdot 08636$ (131)
$\mathrm{Cs}(2)$	$0 \cdot 25$	-0.24903 (84)	-0.24765 (65)	1.893	$\mathrm{Cs}(2)$	$0 \cdot 25$	-0.25083 (185)	-0.24888 (131)
$\mathrm{Cs}(3)$	$0 \cdot 25$	$0 \cdot 41430$ (78)	$0 \cdot 40913$ (46)	1.689	$\mathrm{Cs}(3)$	$0 \cdot 25$	0.41990 (160)	0.41093 (131)
Sb (1)	$0 \cdot 25$	-0.23287 (49)	-0.00114 (47)	0.509	$\mathrm{Bi}(1)$	$0 \cdot 25$	-0.23861 (71)	-0.00124 (65)
$\mathrm{Sb}(2)$	$0 \cdot 25$	0.08239 (56)	$0 \cdot 31533$ (34)	$0 \cdot 439$	$\mathrm{Bi}(2)$	$0 \cdot 25$	$0 \cdot 08140$)79)	$0 \cdot 31632$ (62)
$\mathrm{Cl}(1)$	$0 \cdot 25$	-0.41581 (365)	-0.08941 (225)	$2 \cdot 532$	$\mathrm{Cl}(1)$	$0 \cdot 25$	-0.38597 (530)	-0.09354 (520)
$\mathrm{Cl}(2)$	$0 \cdot 25$	$0 \cdot 24366$ (266)	$0 \cdot 24014$ (166)	$1 \cdot 219$	$\mathrm{Cl}(2)$	$0 \cdot 25$	$0 \cdot 22958$ (389)	0.23534 (412)
$\mathrm{Cl}(3)$	$0 \cdot 25$	-0.41779 (307)	-0.42300 (196)	1.978	$\mathrm{Cl}(3)$	$0 \cdot 25$	- 0.41915 (496)	-0.42254 (470)
$\mathrm{Cl}(4)$	-0.01802 (590)	$0 \cdot 16273$ (198)	0.07504 (134)	$3 \cdot 149$	$\mathrm{Cl}(4)$	-0.01802	$0 \cdot 16415$ (368)	0.07798 (301)
$\mathrm{Cl}(5)$	$0 \cdot 00369$ (760)	-0.00127 (196)	$0 \cdot 24687$ (137)	$3 \cdot 102$	$\mathrm{Cl}(5)$	0.00369	-0.00722 (405)	$0 \cdot 24759$ (298)
$\mathrm{Cl}(6)$	$0 \cdot 00435$ (724)	$0 \cdot 17717$ (236)	$0 \cdot 40550$ (160)	$4 \cdot 160$	$\mathrm{Cl}(6)$	$0 \cdot 00435$	$0 \cdot 17357$ (427)	$0 \cdot 40931$ (353)

Table 4. Interatomic distances and angles of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ (e.s.d.'s are given in parentheses)

(1)	x	y	z
(2)	$\frac{1}{2}-x$	$\frac{1}{2}-y$	$\frac{1}{2}+z$
(3)	$\frac{1}{2}+x$	$-y$	$-z$
(4)	$-x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
(5)	$-x$	$-y$	$-z$
(6)	$\frac{1}{2}+x$	$\frac{1}{2}+y$	$\frac{1}{2}-z$
(7)	$\frac{1}{2}-x$	y	z
(8)	x	$\frac{1}{2}-y$	$\frac{1}{2}+z$

$\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$
Distances (\AA)
$\mathrm{Sb}(1) \mathrm{i}$

$\mathrm{Cl}(3)$ iv	$2 \cdot 45$ (4)
$\mathrm{Cl}(4) 3,5$	$2 \cdot 42$ (4)
Cl(6) 4,6	$2 \cdot 89$ (5)
$\mathrm{Cl}(1) \mathrm{i}$	$2 \cdot 90$ (5)
$\mathrm{Cl}(2) \mathrm{i}$	
$\mathrm{Cl}(5)$ 4,6	$3 \cdot 87$ (5)
$\mathrm{Cl}(4) 1,7$	$3 \cdot 85$ (5)
$\mathrm{Cl}(5) 1,7$	$3 \cdot 72$ (5)
$\mathrm{Cl}(6) 1,7$	$3 \cdot 71$ (5)

$\mathrm{Cs}(2) \mathrm{i}$
$\mathrm{Cl}(2)$ ii $\quad 3.82$ (4)
$\mathrm{Cl}(5) 5,3 \quad 3 \cdot 80(4)$
$\mathrm{Cl}(6) 5,3 \quad 3 \cdot 65$ (4)
$\mathrm{Cl}(3) \mathrm{i} \quad 3.95$ (4)
$\mathrm{Cl}(5)$ 2,8 $\quad 3 \cdot 77$ (3)
$\mathrm{Cl}(1) \mathrm{i} \quad 3.67$ (5)
$\mathrm{Sb}(2) \mathrm{i}$

$\mathrm{Cl}(2) \mathrm{i}$	$2 \cdot 53(4)$
$\mathrm{Cl}(5)$	1,7
$2 \cdot 52(5)$	
$\mathrm{Cl}(6)$	1,7
$\mathrm{Cl}(1)$	$2 \cdot 81(5)$
	$2 \cdot 81(5)$

$\mathrm{Cl}(1) \mathrm{i}$
$\mathrm{Cl}(4) 3,5 \quad 3.76$ (6)
$\begin{array}{ll}\mathrm{Cl}(6) \\ 2,8 & 3.90(6)\end{array}$
$\begin{array}{lll}\mathrm{Cl}(6) & 4,6 & 4 \cdot 12 \\ (6)\end{array}$
$\mathbf{C l}(5) 2,8 \quad 3.75$ (6)
$\mathrm{Cs}(1) \mathrm{i}$
$\mathrm{Cl}(1)$ ii $\quad 3.82$ (4)
$\mathrm{Cl}(4) 1,7 \quad 3.91$ (4)
$\mathrm{Cl}(2) \mathrm{i} \quad 3.72$ (4)
$\mathbf{C l}(5) 4,6 \quad 3 \cdot 88(4)$
$\mathrm{Cl}(6) 4,6 \quad 3.93$ (4)
$\mathrm{Cl}(1) \mathrm{i} \quad 3.88$ (4)

Angles (${ }^{\circ}$)
$\mathrm{Sb}(1) \mathrm{i}$
$\mathrm{Cl}(4) 3 \wedge \mathrm{Cl}(4) 5$
$\mathrm{Cl}(3)$ iv $\wedge \mathrm{Cl}(4) 3,5$
$\mathrm{Cl}(1) \mathrm{i} \wedge \mathrm{Cl}(4) 3,5$
$\mathrm{Cl}(1) \mathrm{i} \wedge \mathrm{Al}(6) 4,6$
$\mathrm{Cl}(3)$ iv $\wedge \mathrm{Cl}(6) 4,6$
$\mathrm{Cl}(6) 4 \wedge \mathrm{Cl}(6) 6$
$\mathrm{Cs}(3) \mathrm{i}$
$\mathrm{Cl}(3)$ ii $\quad 3.83$ (4)
$\begin{array}{lll}\mathrm{Cl}(6) & 1,7 & 3.62(4)\end{array}$
$\mathrm{Cl}(4)$ 2,8 $\quad 3.84$ (4) $\begin{array}{ll}\mathrm{Cl}(3) \mathrm{i} & 3.83 \text { (4) }\end{array}$ $\mathrm{Cl}(4)$ 4,6 $\quad 3.71$ (4)
$\mathrm{Cl}(5) 4,6 \quad 3 \cdot 67(4)$
$\begin{array}{rrrr}\text { (i) } & \frac{1}{4} & y & z \\ \text { (ii) } & \frac{3}{4} & -y & -z \\ \text { (iii) } & \frac{3}{4} & \frac{1}{2}+y & \frac{1}{2}-z \\ \text { (iv) } & \frac{1}{4} & \frac{1}{2}-y & \frac{1}{2}+z\end{array}$
$\mathrm{Cl}(4) 1-\mathrm{Cl}(4) 7 \quad 4.08$ (7)
$\mathrm{Cl}(4) 7-\mathrm{Cl}(4) 1 \quad 3 \cdot 55(7)$
$\mathrm{Cl}(5) 1-\mathrm{Cl}(5) 7 \quad 3.76$ (9)
$\mathrm{Cl}(5) 7-\mathrm{Cl}(5) 1 \quad 3.87$ (9)
$\mathrm{Cl}(6) 1-\mathrm{Cl}(6) 7 \quad 3.75$ (8)
$\mathrm{Cl}(6) 7-\mathrm{Cl}(6) 1 \quad 3 \cdot 88$ (8)

$\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$

Distances (\AA)
$\mathrm{Bi}(1) \mathrm{i}$
$\mathrm{Cl}(3)$ iv $\quad 2.55$ (6)
$\mathrm{Cl}(4) 3,5 \quad 2 \cdot 48$ (5)
$\mathrm{Cl}(6) 4,6 \quad 2 \cdot 84$ (5)
$\mathrm{Cl}(1) \mathrm{i} \quad 2 \cdot 60(8)$
$\mathrm{Cl}(2) \mathrm{i}$
$\mathrm{Cl}(5) 4,6 \quad 4 \cdot 00$ (6)
$\begin{array}{ll}\mathrm{Cl}(4) & 1,7 \\ 3.68(8)\end{array}$
$\mathrm{Cl}(5) 1,7 \quad 3 \cdot 66$ (6)
93.9 (10)
$92 \cdot 0$ (9)
89.4 (9) $90 \cdot 8$ (9) $87 \cdot 7$ (9) $84 \cdot 5$ (10)
$\mathrm{Sb}(2) \mathrm{i}$
$\mathrm{Cl}(5) 1 \wedge \mathrm{Cl}(5) 7 \quad 96 \cdot 4(15)$
$\mathrm{Cl}(2) \mathrm{i} \wedge \mathrm{Cl}(5) 1,7 \quad 94 \cdot 6$ (8)
$\mathrm{Cl}(2) \mathrm{i} \wedge \mathrm{Cl}(6) 1,7 \quad 88.0$ (9)
$\mathrm{Cl}(1)$ iv $\wedge \mathrm{Cl}(6) 1,7 \quad 87 \cdot 9$ (9)
$\mathrm{Cl}(6) 1 \wedge \mathrm{Cl}(6) 7 \quad 83 \cdot 8$ (13)
$\mathrm{Cl}(1)$ iv $\wedge \mathrm{Cl}(5) 1,7 \quad 89 \cdot 1$ (9)
$\mathrm{Cl}(6) 1,7 \quad 3 \cdot 82$ (8)

$\mathrm{Cs}(2) \mathrm{i}$

$\mathrm{Cl}(2) \mathrm{ii}$	$3 \cdot 84(1)$
$\mathrm{Cl}(5) 5,3$	$3.92(6)$
$\mathrm{Cl}(6) 5,3$	$3 \cdot 72(6)$
$\mathrm{Cl}(3) \mathrm{i}$	$3.93(7)$
$\mathrm{Cl}(5) 2,8$	$3.71(6)$
$\mathrm{Cl}(1) \mathrm{i}$	$3 \cdot 41(9)$

Angles (${ }^{\circ}$)

Bi(1) i

$\mathrm{Cl}(4) 3 \wedge \mathrm{Cl}(4) 5$
$\mathrm{Cl}(3)$ iv $\wedge \mathrm{Cl}(4) 3,5$
$\mathrm{Cl}(1)$ i $\wedge \mathrm{Cl}(4) 3,5$
$\mathrm{Cl}(1) \mathrm{i} \wedge \mathrm{Cl}(6) 4,6$
$\mathrm{Cl}(3)$ iv $\wedge \mathrm{Cl}(6) 4,6$
$\mathrm{Cl}(6) 4 \wedge \mathrm{Cl}(6) 6$
$\mathrm{Bi}(2) \mathrm{i}$

$\mathrm{Cl}(2) \mathrm{i}$	6)
$\mathrm{Cl}(5) 1,7$	2.56 (5)
$\mathrm{Cl}(6) 1,7$	$2 \cdot 83$ (5)
$\mathrm{Cl}(1)$ iv	$3 \cdot 08$ (7)
$\mathrm{Cl}(3) \mathrm{i}$	
$\mathrm{Cl}(6) 3,5$	$3 \cdot 79$ (7)
$\mathrm{Cl}(5)$ 2,8	$3 \cdot 85$ (8)
$\mathrm{Cl}(4)$ 4,6	$3 \cdot 57$ (8)
$\mathrm{Cl}(4) 2,8$	$3 \cdot 83$ (6)

$\mathrm{Cs}(3) \mathrm{i}$

$\mathrm{Cl}(3)$ ii	$3 \cdot 82(1)$
$\mathrm{Cl}(6) 1,7$	$3 \cdot 76(6)$
$\mathrm{Cl}(4) 2,8$	$3 \cdot 89(6)$
$\mathrm{Cl}(3) \mathrm{i}$	$3 \cdot 77(7)$
$\mathrm{Cl}(4) 4,6$	$3 \cdot 69(5)$
$\mathrm{Cl}(5) 4,6$	$3 \cdot 67(6)$

$\mathrm{Cl}(1) \mathrm{i}$
$\mathrm{Cl}(4) 3,5 \quad 3.44$ (7)
$\mathrm{Cl}(6)$ 2,8 $\quad 4 \cdot 24$ (8)
$\begin{array}{ll}\mathrm{Cl}(6) & 4,6 \quad 4 \cdot 03 \\ \text { (9) }\end{array}$
$\mathrm{Cl}(5)$ 2,8 $\quad 3.79$ (9)
$\mathrm{Cs}(1) \mathrm{i}$
$\mathrm{Cl}(1) \mathrm{ii} \quad 3.84$ (1)
$\mathrm{Cl}(4) 1,7 \quad 3.90(4)$
$\mathrm{Cl}(2) 1 \quad 3.71$ (7)

$\mathrm{Cl}(5)$	4,6
$\mathrm{Cl}(6)$	$3 \cdot 6$
$\mathrm{Cl}(1)$	$3 \cdot 93(6)$

$\mathrm{Cl}(1) \mathrm{i} \quad 4 \cdot 27$ (9)
$\mathrm{Cl}(4) 1-\mathrm{Cl}(4) 7 \quad 4 \cdot 10$ (6)
$\mathrm{Cl}(4) 7-\mathrm{Cl}(4) 1 \quad 3 \cdot 54$ (6)
$\mathrm{Cl}(5) 1-\mathrm{Cl}(5) 7 \quad 3.76$ (8)
$\mathrm{Cl}(5) 7-\mathrm{Cl}(5) 1 \quad 3.87$ (8)
$\mathrm{Cl}(6) 1-\mathrm{Cl}(6) 7 \quad 3 \cdot 75$ (8)
$\mathrm{Cl}(6) 7-\mathrm{Cl}(6) 1 \quad 3 \cdot 88$ (8)
$\mathrm{Bi}(2) \mathrm{i}$
$91 \cdot 2$ (20)
$90 \cdot 5$ (20)
$85 \cdot 1$ (20)
$95 \cdot 4$ (20)
$89 \cdot 2$ (20)
87.0 (20)

Sb atoms. Each $\mathrm{Sb}(1)$ atom is located at approximately $2.43 \AA$ from three Cl atoms and at $2.89 \AA$ from three opposite Cl atoms [Fig. 2(c)], and each $\mathrm{Sb}(2)$ atom at $2.52 \AA$ from three Cl atoms and at $2.81 \AA$ from opposite ones [Fig. 2(d)]. Thus the Sb atoms form pyramidal molecules with the three Cl atoms at the shorter distances. The apex angle $\mathrm{Cl}-\mathrm{Sb}-\mathrm{Cl}$ averages $93^{\circ} 12^{\prime}$ for $\mathrm{Sb}(1) \mathrm{Cl}_{3}$ and $95^{\circ} 12^{\prime}$ for $\mathrm{Sb}(2) \mathrm{Cl}_{3}$ molecule. The SbCl_{3} molecules are represented by dotted lined triangles in Fig. 1.

SbCl_{3} molecules

The two types of SbCl_{3} molecule in the present structure are compared with those in other related structures in Fig. 2. The molecules in $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ have only mirror symmetry while those in $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ have trigonal symmetry. The differences 0.03 and $0.01 \AA$ between the three bond lengths for $\mathrm{Sb}(1)$ and $\mathrm{Sb}(2)$ respectively are rather smaller than the corresponding estimated standard deviations. In the two independent molecules, however, there is no trigonal symmetry as far as bond angles are concerned. The two angles related by mirror symmetry are $92^{\circ} 0^{\prime}$ for $\mathrm{Sb}(1) \mathrm{Cl}_{3}$ and $94^{\circ} 36^{\prime}$ for $\mathrm{Sb}(2) \mathrm{Cl}_{3}$; the third angle is much greater: $93^{\circ} 54^{\prime}$ for $\mathrm{Sb}(1) \mathrm{Cl}_{3}$ and $96^{\circ} 24^{\prime}$ for $\mathrm{Sb}(2) \mathrm{Cl}_{3}$. It is notable that the difference, amounting to $0.10 \AA$ between the mean bond lengths for the two independent molecules in

Fig. 1. The projection of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ along the a axis. The smaller open circles are Sb atoms, the larger ones are Cl atoms and the black ones, Cs atoms.

Fig. 2. Antimony trichloride molecules, showing interatomic distances and angles. (a) SbCl_{3} (Lindqvist \& Niggli, 1956), (b) SbCl_{3} in $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ (Kihara \& Sudo, 1971), (c) $\mathrm{Sb}(1) \mathrm{Cl}_{3}$ in $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and (d) $\mathrm{Sb}(2) \mathrm{Cl}_{3}$ in $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$.
$\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$, is more than twice the estimated standard deviation for the bond lengths. Since the normal covalent distance $\mathrm{Sb}-\mathrm{Cl}$ is $2.40 \AA$ (Pauling \& Huggins, 1934), the mean bond length $2 \cdot 52 \AA$ between $\mathrm{Sb}(2)$ and three Cl atoms is considerably lengthened. Fig. 3 shows the arrangement of Cl and tervalent atoms in the structure of the As, Sb and Bi compounds. In the structure of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$, octahedra occupied by $\mathrm{Sb}(1)$ atoms share corners with six, of which three are occupied by $\mathrm{Sb}(2)$ atoms and three are vacant, and those occupied by $\mathrm{Sb}(2)$ atoms share three corners with ones occupied by $\mathrm{Sb}(1)$ atoms and one face with a vacant octahedron. Each $\mathrm{Sb}(2) \mathrm{Cl}_{3}$ molecule shares its basal face with the vacant octahedron. The mean $\mathrm{Cl}-\mathrm{Cl}$ distance of the $\mathrm{Sb}(2) \mathrm{Cl}_{3}$ molecule, $3.73 \AA$, is much longer than that of the $\mathrm{Sb}(1) \mathrm{Cl}_{3}$ molecule, $3 \cdot 52 \AA$, and that of the SbCl_{3} in $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}, 3 \cdot 56 \AA$ (Fig. 3). The longer $\mathrm{Cl}-\mathrm{Cl}$ distance in the $\mathrm{Sb}(2) \mathrm{Cl}_{3}$ molecule, the larger angle of $\mathrm{Cl}-\mathrm{Sb}(2)-\mathrm{Cl}$ and the longer distance of $\mathrm{Sb}(2)-\mathrm{Cl}$ can be considered to be caused by the sharing of the molecular basal face with a vacant octahedron.

The relationship between α and β types

The length of the b axis of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ is smaller than the length expected from $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$, as shown in Table 1 . This can be explained by considering the ar-
rangement and distortion of the anion octahedra. The octahedra occupied by Sb atoms are distorted as shown in Fig. 3 and the faces opposite the SbCl_{3} molecules are considerably expanded compared with the others. In the structure of the α type, corners of the octahedra are shared and the octahedra occupied by Sb atoms are arranged so that the expanded faces are parallel to (001) [Fig. 3(b)]. Accordingly, the length of the $a(=b)$ axis of the α type will be strongly affected by distortion of the octahedra occupied by Sb atoms. On the other hand, in the structure of the β type, the octahedra occupied by $\mathrm{Sb}(1)$ atoms do not arrange with the expanded faces parallel to (001) [Fig. 3(c)]. In this structure, accordingly, the length of the b axis
is smaller than $a_{\alpha} / 3$ (a_{α} : the a axis length of the α type). In addition to the above arguments, differences in volumes between vacant octahedra in the two structures should be noted. Vacant octahedra tend to expand in the α type, but do not expand in the β type since they share a face with an SbCl_{3} molecule. It is apparent that the octahedral arrangement in the structure of the β type gives a more compact structure compared with that in the α type. Judging from the compactness of the structures, the β type is probably the low-temperature form and the α type the high-temperature form of $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$. This is supported by the fact that the β type transforms into the α type on heating to $300^{\circ} \mathrm{C}$.

Fig. 3. Arrangements of Cl octahedra and of trichloride molecules. Numerals represent average values over three lengths. (a) $\mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9}$, (b) $\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$, (c) $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and (d) $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$.

Bi compound and other related structures
The Bi compound gives only the structure analogous to $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$. Each Bi atom also forms a BiCl_{3} pyramidal molecule. The interatomic distances in the molecules are $2.50 \AA$ for $\mathrm{Bi}(1)-\mathrm{Cl}, 2.53 \AA$ for $\mathrm{Bi}(2)-\mathrm{Cl}$, $3.57 \AA$ for $\mathrm{Cl}-\mathrm{Cl}$ of $\mathrm{Bi}(1) \mathrm{Cl}_{3}$ and $3.69 \AA$ for $\mathrm{Cl}-\mathrm{Cl}$ of $\mathrm{Bi}(2) \mathrm{Cl}_{3}$. In this structure, the difference between the bond lengths and angles of the two crystallographically independent molecules is rather small and each molecule is less distorted.

The structural relationship between the $\mathrm{Fe}, \mathrm{As}, \mathrm{Sb}$, $\mathrm{Bi}, \mathrm{Tl}, \mathrm{Cr}$ and W compounds is summarized as follows:

$$
\mathrm{MCl}_{3}\left\{\begin{array}{c}
\mathrm{Cs}_{3} \mathrm{Fe}_{2} \mathrm{Cl}_{9} \\
\mathrm{Cs}_{2} \mathrm{Cl}_{9}^{-3} \mathrm{As}_{2} \mathrm{Cl}_{9} \\
\alpha-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9} \\
\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9} \\
\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9} \\
\mathrm{Cs}_{3} \mathrm{Tl}_{2} \mathrm{Cl}_{9} \\
\mathrm{Cs}_{3} \mathrm{Cr}_{2} \mathrm{Cl}_{9} \\
\mathrm{~K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}
\end{array}\right\} \mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9} \text { type } \quad \begin{aligned}
& \\
& \mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9} \text { type } \\
& \\
& \mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9} \text { type } .
\end{aligned}
$$

The structure of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ (or $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$) is comparable with, but not the same as, the structure of the $\mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}$ type. The former is composed of Cs and Cl atoms and discrete MCl_{3} molecules and the latter has the complex $\mathrm{M}_{2} \mathrm{Cl}_{9}^{3-}$ while both have a similar arrangement of Cs and Cl atoms. It is considered to be difficult for elements such as $\mathrm{Fe}, \mathrm{As}, \mathrm{Sb}$ and Bi , which do not appear to give stable complexes, to form the structure of the $\mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}$ type, because of closer M-M separation in the structure of the $\mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}$ type. The structure of the $\mathrm{K}_{3} \mathrm{~W}_{2} \mathrm{Cl}_{9}$ type is presumably shown only by elements such as Tl, Cr and W , which form stable complexes.
In the $\mathrm{Fe}, \mathrm{As}, \mathrm{Sb}$ and Bi compounds, with an increase in the size of the tervalent atoms, the structure of the $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ type is preferentially formed. Fig. 3 shows that the vacant octahedra in the $\mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9}$ type are considerably larger than those in the $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{3}$ type. With increase in the size of the tervalent atom, it becomes increasingly difficult to form a compact structure
of the $\mathrm{Cs}_{3} \mathrm{As}_{2} \mathrm{Cl}_{9}$ type. On the other hand, each vacant octahedron in the structures of $\beta-\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Cl}_{9}$ and $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ slightly contracts because of sharing a face with an MCl_{3} molecule [Fig. 3(c) and (d)]. The structure of the $\mathrm{Cs}_{3} \mathrm{Bi}_{2} \mathrm{Cl}_{9}$ type is stable for the compounds having large tervalent atoms, since they hardly require contraction of vacant octahedra. Only the Sb compound crystallizes in the two structural types, because of the intermediate size of the Sb atom between the As and the Bi atoms.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-306, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Foster, F. \& Hargreaves, A. (1963). Acta Cryst. 16, 1124-1133; 1133-1139.
Grant, D. F., Howells, R. G. \& Rogers, D. (1957). Acta Cryst. 10, 489-497.
Hoard, J. L. \& Goldstein, L. (1935). J. Chem. Phys. 3, 117-122.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Kihara, K. \& Sudo, T. (1971a). Z. Kristallogr. 134, 155158.

Kihara, K. \& Sudo, T. (1971b). Z. Kristallogr. 134, $142-$ 144.

Lindquist, I. \& Niggli, A. (1956). J. Inorg. Nucl. Chem. 2, 345-347.
Pauling, L. \& Huggins, M. L. (1934). Z. Kristallogr. 87, 205-238.
Phillips, D. C. (1954). Acta Cryst. 7, 746-751.
Phillips, D. C. (1956). Acta Cryst. 9, 819-821.
Powell, H. M. \& Wells, A. F. (1935). J. Chem. Soc. pp. 1008-1012.
UNICS System (1967). Universal Crystallographic Computation Program System, edited by T. Sakural. Cryst. Soc. Japan.
Watson, $^{\text {W. H. Jr \& Waser, J. (1958). Acta Cryst. 11, }}$ 689-692.
Wessel, G. J. \& IJdo, D. J. W. (1957). Acta Cryst. 10, 466468.

Yamatera, H. \& Nakatsu, K. (1954). Bull. Chem. Soc. Japan, 27, No. 4, 244-244.

[^0]: * Present address: Department of Earth Sciences, Faculty of Science, Kanazawa University, 1-1, Marunouchi, Kanazawa, Japan.

[^1]: * The table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30327 (2 pp .). Copies can be obtained through the Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

